Non-Commutative Ribbons and Quasi-Differential Operators

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Commutative Partial Differential Operators

In one variable, there exists a satisfactory classification of commutative rings of differential operators. In several variables, even the simplest generalizations seem to be unknown and in this report we give examples and pose questions that may suggest a theory to be developed. In particular, we address the existence of a “spectral variety” generalizing the spectral curve of the one dimension...

متن کامل

On quasi-zero divisor graphs of non-commutative rings

Let $R$ be an associative ring with identity. A ring $R$ is called reversible if $ab=0$, then $ba=0$ for $a,bin R$. The quasi-zero-divisor graph of $R$, denoted by $Gamma^*(R)$ is an undirected graph with all nonzero zero-divisors of $R$ as vertex set and two distinct vertices $x$ and $y$ are adjacent if and only if there exists $0neq rin R setminus (mathrm{ann}(x) cup mathrm{ann}(y))$ such tha...

متن کامل

Non commutative functional calculus: bounded operators

In this paper we develop a functional calculus for bounded operators defined on quaternionic Banach spaces. This calculus is based on the notion of slice-regularity, see [4], and the key tools are a new resolvent operator and a new eigenvalue problem. AMS Classification: 47A10, 47A60, 30G35.

متن کامل

Quasi-Particles in Non-Commutative Field Theory

After a short introduction to the UV/IR mixing in non-commutative field theories we review the properties of scalar quasi-particles in noncommutative supersymmetric gauge theories at finite temperature. In particular we discuss the appearance of super-luminous wave propagation. 1 Talk given at NATO ARW ”Non-Commutative Structures in Mathematics and Physics”, Kyiv 24-27 Sep. 2000

متن کامل

Non commutative functional calculus: unbounded operators

In a recent work, [3], we developed a functional calculus for bounded operators defined on quaternionic Banach spaces. In this paper we show how the results from [3] can be extended to the unbounded case, and we highlight the crucial differences between the two cases. In particular, we deduce a new eigenvalue equation, suitable for the construction of a functional calculus for operators whose s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annals of Combinatorics

سال: 2000

ISSN: 0218-0006

DOI: 10.1007/pl00001275